Today, fermentation might play an important role in the drive to reduce food waste, and could offer a sustainable approach to producing nutritious food for a growing global population . Advances in microbiology, biotechnology and engineering have also opened up opportunities to develop new precision fermentation processes that harness engineered microorganisms as cellular factories for producing defined products, from proteins to pigments, sustainably and at scale.
Here at GEA we think we are uniquely placed to provide key equipment and knowledge that can support R&D and commercial development within the precision fermentation field.
Fermentation is a process by which some types of microorganisms such as bacteria and yeast – and even our own muscles during vigorous exercise – can break down glucose and other carbohydrates to generate energy anaerobically, i.e. without oxygen. The products of fermentation typically include alcohol or lactic acid.
For millennia people have also harnessed microorganisms to produce fermented foods, primarily as a method for preservation, but also to change or create desired tastes, textures and other properties. From beer and wine, to salami, cheese, yoghurt and Kimchi, many fermented products that in the modern world are produced on an industrial scale, are derived from ancient processes.
But we can also engineer microorganisms, typically yeast cultures, algae, fungi or bacteria, to function as tiny production plants, or cellular factories that produce specific molecules, such as proteins, fats, micronutrients and other organic compounds with desired properties. Using precision fermentation processes these engineered or modified cells are grown in bioreactors, where they are supplied with all the nutrients they need to multiply and stay healthy. The target compounds that they produce may either be released into the surrounding medium, from where they can be isolated, or retained in the cell, in which case the cells can be harvested from the bioreactor and broken apart to release their cargo.
GEA offers expertise for the development, configuration and supply of the entire process - upstream and downstream - to support organizations looking to create or scale up precision fermentation processes for food or industrial applications. Our expertise spans the complete process, from bioreactor design and operation, to downstream processing in recovery (cell removal), purification and drying, through to final packaging.
GEA experts at our New Food Application and Technology Center of Excellence (ATC) are available to partner with you on your precision fermentation journey. We can combine process, application and engineering expertise with digital tools and physical testing in pilot-scale equipment to understand, design, simulate and test the entire process.
Cells propagated in bioreactors will have specific and precise needs – including the supply of nutrients and gases to optimize cell health, growth and productivity, and minimize the production of unwanted byproducts and waste. Whatever your cell type and final product, we can apply our state-of-the-art modelling and simulation tools to help design and fine tune your precision fermentation process virtually, before or after testing out in pilot scale equipment.
These test results can provide a key baseline of conditions that will support the growth, health and productivity of your cell type. From this data we can simulate the likely requirements for scale up to commercial production volumes. It’s our aim to give you confidence in your process and equipment, before you invest. We believe that using our knowhow and technologies we are uniquely placed to generate the insight into cell behavior and bioreactor conditions that will help reduce risk and facilitate efficient, productive scale up.
Importantly, GEA expertise spans the whole process, including bioreactor design, configuration, and optimization, but also upstream and downstream stages, GEA specialists at test centers for a range of GEA technologies can work alongside our ATC experts and you, our customer, to design and configure an end-to-end precision fermentation process line.
We can configure systems for mixing, UHT treatment, high pressure homogenization, separation, media and water recovery by filtration, along with concentration, crystallization, drying and filling and packaging. We also offer the expertise and technology knowhow to support how you formulate your product. From grinding and mixing, to processing (forming, coating cooking), or freezing, slicing and packing, our technologies and expertise could help you convert your cells’ products into nutritious, commercially viable foods that could help to secure safe, affordable nutrition that consumers will love.
用途
5 の 4 を表示する
The GEA Axenic® M product line is an industrial-scale bioreactor system that has been designed specifically for cultivation and precision fermentation in the food industry.
GEA Axenic® P is a flexible pilot-scale bioreactor designed to help you scale up cell cultivation and precision fermentation processes for a wide range of new food application.
細胞農業の新興分野のイノベーションをサポートするため、New Food Application and Technology Center of Excellence (ATC) が中央ハブとして設立されました。このGEAの施設は、最先端のバイオリアクターおよび精密発酵、および割り当てられた上流側と下流側の技術を非常に柔軟なパイロットスケールのセットアップに提供し、醗酵および細胞培養プロセスを試し、スケールアップに向けて作業することができるようにします。
GEAでは最新の数値流体力学ツールと運動学モデルを高度な計算能力と組み合わせることにより、ラボベンチから産業規模まで、あらゆるバイオリアクター環境をデジタル的に反映することができる技術を開発しました。
健康で幸せな乳牛は、持続可能な生乳生産を成功させる鍵です。したがって、乳牛を健康に保つことは、すべての酪農家の取り組みの中心にあります。個々の乳牛のニーズに合わせた適切な給餌、良好な飼育環境、新鮮な空気、水、光など、多くの要因が乳牛の健康に影響を与えます。しかし同時に、搾乳方法は乳牛の健康状態に大きな影響を与えます。GEAは「Good Cow Milking」の理念でよく知られており、家畜の健康と乳質においてより良い結果を出すために、常にさら...
どの業界も、厳しい脱炭素規制や法規制を乗り越えながら、ネットゼロの目標達成に向けて懸命に取り組んでいます。同時に、企業は、品質、製品開発、プロセスの最適化に対する高まる要求のバランスを取りながら、収益性の向上に努めなければなりません。この課題には、GEAが提供するような協調的かつ包括的なアプローチが必要です。
コーヒー、カカオ、牛乳、肉、魚、卵。こういった毎日の定番ともいえる食材は、集約農業に大きく依存しています。ニューフード技術の台頭に伴い、これまで以上に持続可能な代替食品を使用できるようになりました。そこで今回は、GEA で液体・発酵・充填担当上級副社長を務めるライマー・グッテ博士と対談し、その可能性と政策について探ってみました。