CO2 saving processes

Waste Heat Recovery Unit

Increasing economic efficiency and reducing the CO2-emissions with energy recovery units in your industrial process.

Waste heat recovery unit

How does a GEA Waste Heat Recovery Unit work?

Engineered to capture and repurpose waste heat from industrial processes, particularly exhaust and flue gases, this innovative technology effectively reduces reliance on fossil fuels, minimizes carbon emissions and lowers overall energy costs. 

The WHRU operates -often in conjunction with the Organic Ranking Cycle (ORC) due to the temperature ranges involved- transferring heat from flue gas to another medium through a heat exchanger, which can then be utilized locally or transported across the production site for various applications such as waste gas treatment, district heating or power generation. 

GEA delivers customized heat exchanger designed for each specific application, adjusting to factors like gas flow velocity, pipe dimensions and flue gas composition. This tailored approach, backed by GEA's extensive industrial experience across diverse sectors, ensures optimal performance and efficiency for each unique WHRU installation.
energy-recovery-flue-gases

Benefits of a Waste Heat Recovery Unit

  • Optimized design.
  • Self-cleaning operation for enhanced plant availability and efficiency.
  • Continuous Online Cleaning System for managing high dust contents exceeding 10g/m³ std. as well as dry, sticky and/or abrasive dust.
  • Operational cost reduction of up to 25%.
  • Flexibility in Heat Transfer Media. 
  • Both for thermal oils and pressurized water systems.

WHRU in the Cement Industry

cement-industry-flowscheme

Process for WHRU in the Cement Industry

GEA has been supplying heat recovery systems for the cement industry for more than a decade. 

Both on the raw gas side upstream of an emission control system as well as downstream of an emission control system: GEA offers tried and tested waste heat recovery system that do not impact your production process while recovering a large amount of waste heat. On the raw gas side with sticky dust an online cleaning system is applied to keep heat transfer at an optimum over years. With this, GEA supplied WHRUs up to 6.1 MW thermal power, converting it to 1 MW of electrical energy via the ORC process and/or powering your SCR as well.

Currently applied to the glass industry for power generation via an ORC or for heating purposes, the system is ready to utilize waste heat for a CEBO® Carbon Capturing unit instead.

WHRU in the Glass Industry

glass-industry-flowscheme-ec

Process for WHRU in the Glass Industry

Special WHRU systems are available and already in use for both the kiln flue gas and the exhaust gas from the clinker cooler.  Especially for the difficult kiln flue gas with a high load of abrasive dust and demanding pollutants, GEA has supplied systems for > 6.5 MW thermal output, which have already been in successful operation for more than eight years. 
Thanks to GEA's expertise in emission control, the deposition of flue gas components on the heat exchanger surface is prevented to achieve very good heat transfer performance with minimum maintenance costs.

By additionally recovering heat from the clinker cooler side, either to operate a tail-end SCR unit or in combination with heat recovered from the kiln flue gas to supply the ORC process, thermal losses are reduced to an economical minimum. While GEA’s WHRUs already pays for itself by direct heating or electrical power generation now, it enables you to capture carbon dioxide emissions in the future by powering our CEBO® Carbon Capturing unit, complying with upcoming environmental regulations.

Downloads

GEA-inzichten

Filtration sensation: The washing machine principle

Engineering innovation often takes the form of incremental gains. Once in a while, it takes a leap. Case in point: The washing machine. Launched in September 2022, two new GEA software solutions are upending convention and delivering...

GEA Service: De lifeline achter 's werelds productielijnen

Elke vierde verpakking spaghetti, elke tweede liter bier en een kwart van alle verwerkte melk ter wereld is afhankelijk van machines van GEA. Wanneer productielijnen aandacht nodig hebben, komt GEA Service in actie om problemen...

Nieuwe pompfaciliteit in Polen hervormt hygiënische productie

GEA’s faciliteit in Koszalin, Polen, is toonaangevend in hygiënische pompproductie. De multifunctionele locatie combineert tientallen jaren Duitse technische expertise met geavanceerde digitalisering en schaalbare oplossingen....

Energy saving is a key success factor when trying to achieve a reduction of the carbon footprint, it can be made by improving process efficiency to recover waste heat, not only from the production process, but also from the hot process gas that in many cases is simply released into the atmosphere, unutilized. 

The saving of energy costs and the reduction of CO2 emissions by avoiding fossil fuels make an Energy Recovery Plant an investment that not only provides competitive advantages that positively impact the final product cost, but also helps preserve our environment for the future generations.

GEA offers WHR (Waste Heat Recovery) units alone or in combination with gas cleaning technologies as well, using heat exchanger systems suitable for waste gas conditions such as dust content.

These heat exchanger units have been used in diverse projects worldwide and have proven reliable and highly efficient. 

Usually, the GEA energy recovery system consists of:

  • Waste Heat Recovery Units
  • ORC module

The heat recovered from the flue gas can be used for: 

  • power generation
  • compressed air production by use of thermal oil
  • local and district heating networks
  • heat for industrial processes

Particular features

  • Process-optimized heat recovery
  • High serviceability
  • High modular flexibility, apt for narrow spaces
  • Quick ROI (Return of Investment), sustainable reduction of energy costs
  • Electricity production by ORC (Organic Rankine Cycle) technology

Working Principle

Working Principle of Energy Recovery from Flue gasesThe largest sources of waste heat for most industries are exhaust and flue gases. Either as high-temperature gases from burners or at lower temperatures within the air treatment process.
Cement industry

Waste heat  can be recovered from the clinker cooler waste gas as well as the preheater waste gas. Different heat exchanger systems shall be used for the two waste gases, because of the difference in dust content.

The heat can be used for the operation of an ORC turbine for power generation or to generate hot thermal oil or water for other uses. 

The use of the heat energy in the gas cleaning process in the SCR is possible as well:

cement-industry-flowscheme

Process for WHRU in the Cement Industry

Glass industry

Depending on the available gas temperature upsteam and downstream the gas cleaning, the waste heat can be recovered at two different stages of the cycle.

glass-industry-flowscheme-ec

Process for WHRU in the Glass Industry

Ontvang nieuws van GEA

Blijf op de hoogte van GEA’s innovaties en verhalen door je in te schrijven op nieuws van GEA.

Hulp nodig?

Wij zijn er om je te helpen! Met slechts een paar gegevens kunnen we je vraag beantwoorden.