Sorption

Removal of SOx by dry scrubbing

A multipollutant control system with demonstrated high efficiency at removing SOx and other hazardous pollutants as well.

The dry sorption process refers to the practice of injecting a dry alkaline mineral into a flue gas stream to reduce acid gas emissions (i.e. SO3/H2SO4, HCl, SO2, and HF). Two basic steps are considered:

  • The first step is injection of a dry sorbent into the entrained flow reactor providing sufficient physical and chemical reaction time to catch and agglomerate acidic gas and organic compounds as well as heavy metals.
  • During the second step, these compounds are removed by a downstream particulate matter control device such as a baghouse filter, electrostatic precipitator or candle filter.

Hydrated lime (Ca [OH]2) is normally used as the absorbent, either directly as calcium hydroxide in the form of a dry powder or produced on site from calcium oxide (CaO) in a dry hydration plant. Other often used sorbents are trona (Na2CO3 ∙ NaHCO3 ∙ 2H2O) and sodium bicarbonate (NaHCO3). 

Particular features:

  • Highly reliable solution with low CAPEX
  • Reagent used in dry form.
  • SOx-removal results (limited to approx. 70%efficiency is pending on temperature and watercontent of fluegas)
  • Small footprint equipment.
  • Different kinds of dry reagent can be used. 
  • Dry reaction products (removed from gas in the precipitator) can be recycled to feed.
dry-sorption-removal-SO2-table

Working Principle

Working Principle of Dry sorption with entrained flow reactor

A dry reagent for SOx removal is injected to the raw gas upstream of the Entrained Flow Reactor where the chemical reaction takes place.

Reaction products are removed from the gas together with the furnace dust (dedusting) in the dedusting equipment.

The essential process stages are:

  • Absorbent preparation and dosing
  • Removal of SOx (acid gases) in the reactor
  • Particulate removal device (ESP, bag filter, candle filter)
  • Solids recirculation and product discharge
dry-sorption-removal-so2-working-principle
sorption-desox

Downloads

GEA-inzichten

Human hands brought together to form a circle

In for the better: Community engagement at GEA

To support community engagement, GEA offers employees one day of paid time off per year.

How a digital rotary parlor supports sustainable dairy farming

How do you lead a dairy farm into the next generation while ensuring a sustainable future and animal welfare while managing increasing complexity? This is a question almost every dairy farmer around the world must consider. The...

GEA misison 30 logo

A strategy for the better: CEO interview on GEA's Mission 30

After reaching its Mission 26 targets two years early, GEA launches Mission 2030 strategy with focus on growth, value and making a positive impact.

Ontvang nieuws van GEA

Blijf op de hoogte van GEA’s innovaties en verhalen door je in te schrijven op nieuws van GEA.

Hulp nodig?

Wij zijn er om je te helpen! Met slechts een paar gegevens kunnen we je vraag beantwoorden.