A bioreactor for new food applications
The GEA Axenic® C product line is an industrial-scale bioreactor system that has been designed specifically for cultivating mammalian and other eukaryotic cells in the food industry.
Based on a stirred tank reactor approach, the Axenic® C Bioreactor has been developed to let you unlock the benefits of fed-batch and continuous cultivation, allowing you to grow engineered animal and other non-adherent eukaryotic cell types, as well as create hybrid products, at commercial scale.
Importantly, our Axenic® portfolio of bioreactor technology isn’t just an adaptation of units designed for pharma or traditional biotech applications. We’ve focused on developing fully regulatory compliant solutions that will let you unlock a multitude of opportunities in the exciting sector of “new foods,” including cultivated meats and fats.
To do this we’ve had a rethink on the design of bioreactors. Rather than expect you to adapt cells to a fixed bioreactor design, we’ve focused on cell requirements, such as oxygen transfer, and temperature, and factors such as their shear sensitivity, to really understand what is needed in a bioreactor design and its function. We’ve done this with our Virtual Bioreactor Testing technology.
GEA virtual bioreactor testing is possible thanks to an advanced digital twin simulation tool that allows us to open up designs and understand what is happening within the system. Using our technology we can derive, from known physical tests, important data on shear forces, optimum temperature, oxygen transfer rates, and other key criteria. With this knowledge we’ll work with you to fine tune the physical setup of your bioreactor as well as the delivery of oxygen and nutrients to your cells, to maximize yield and efficiency. Ultimately, the results from detailed testing and validation can help you to generate proof of concept, demonstrate scale up - from lab scale, to pilot and then industrial volumes - as well as evaluate new cell strains and help you to innovate and generate new product types.
Cultured mammalian cells are especially sensitive to damage by the shear force generated in the bioreactor. That said, different mammalian cell types will be affected to different degrees. Where embryotic cells are very fragile and easily damaged by such shear forces, meat cells tend to be more robust and under some circumstances even benefit from shear. To get the best bioreactor fit for your application we use our virtual testing techniques to simulate where in the system the largest shear forces occur, and adjust the design accordingly. Cell growth and performance may also be affected by factors such as bubble break up, and by gradients, especially by dissolved gases in the media. To compensate for this the Axenic® C bioreactor is supplied by default with multiple gas connections so you can be confident of getting the right profile for generating reproducible, accurate levels of both O2 and CO2. We can in addition configure the bioreactor system with perfusion technology to remove inhibiting products, and potentially couple the setup with recovery systems that can effectively reduce operating expenses by reducing waste.
Importantly, the Axenic® C is fully automated, with valve feedback alerting operators to any valve or system failure, sterile barriers to media and harvest lines that allow for efficient production 24/7. Our GEA Codex® process control platform helps to ensure stability and safety during day-to-day operation, offering strong recipe control as well as reducing manual labor so there’s less risk of both human error or contamination. You can expect higher process repeatability and reliability, and reduced downtime. The combination of automation and monitoring also helps to reduce waste and the use of resources and media.
Partner with GEA on your new food journey, and you won’t just get state-of-the-art bioreactor equipment. We like to start with a basic design study to go through your process, what you do today, and evaluate the process with you to make sure that your new facility will fit together with equipment up and downstream of the bioreactors.
At our New Food Application and Technology Center of Excellence (ATC) you can evaluate our equipment, work with our experts to carry out physical and computational testing, and access all of our process, engineering and cell culture/fermentation knowhow spanning multiple industries, from dairy, to brewery and pharma.
So, wherever you are on your journey, let us work with you to evaluate your needs and match our bioreactor system to your cells and end products.
Axenic is registered as a trademark in several countries worldwide.
GEA 将最新的计算流体动力学工具和动力学模型与先进的计算能力相结合,产生了一种可以数字化反映从实验室工作台到工业规模的几乎任何生物反应器环境的技术。
新食品应用和技术卓越中心 (ATC) 已成为支持新兴细胞农业领域创新的中心枢纽。该 GEA 设施提供领先的生物反应器和精密发酵,并在高度灵活的中试规模设置中分配上游和下游技术,因此您可以试验和评估发酵和细胞培养过程,并扩大规模。
The GEA Axenic® M product line is an industrial-scale bioreactor system that has been designed specifically for cultivation and precision fermentation in the food industry.
GEA Axenic® P is a flexible pilot-scale bioreactor designed to help you scale up cell cultivation and precision fermentation processes for a wide range of new food application.
健康快乐的奶牛是成功和可持续牛奶生产的关键。因此,保持奶牛健康是每个奶农努力的核心。奶牛的健康受到许多因素影响,例如根据奶牛个体需求进行适当喂养、良好的饲养条件以及新鲜的空气、水和光照。而且,挤奶方式对奶牛的健康状况也有很大的影响。GEA 因其“优质挤奶理念”而闻名,不断致力于进一步发展,并在动物健康和牛奶质量方面取得更好的成果。
各行各业都在努力实现净零排放目标,同时遵守严格的脱碳法规和立法。与此同时,公司必须平衡日益增长的质量、产品开发和工艺优化需求,此外,还必须努力提高盈利能力。应对这一挑战需要采取 GEA 提供的协作和整体方法。
咖啡、可可、牛奶、肉类、鱼类和蛋类 - 这些日常主食在很大程度上依赖集约农业。随着新食品技术的兴起,我们有了更多可持续的替代品。我们采访了 GEA 液体、发酵和灌装部门的高级副总裁 Reimar Gutte 博士,探讨其中的可能性和政策。