Water
With the worldwide population growth and the resultant increase in demand for fresh water for municipalities, agriculture and industry, there is a corresponding increase in the challenges for the need to assure global water demand with innovative technologies. This is because, whereas demand for fresh water is rising, there is a corresponding decline in its availability, and not only climate change but also environmental contamination are further exacerbating the worldwide water crisis. The trend is therefore increasingly moving in the direction of recovering drinking water from salt water. GEA is supporting this development with powerful decanters which enable procedures for sea water desalination to be designed with economic as well as ecological efficiency.
The three most important processes in sea water desalination are:
Evaporators are used in the MED- and MSF-processes. These operate under vacuum in order to achieve the best performance rate. In all cases, the vacuum is created using multi-stage steam jet vacuum pumps. Together with the corresponding condensers, these vacuum pumps are an integral part of the evaporation plant and are therefore becoming an increasing focus of attention.
Reverse osmosis is one of the most common methods for the desalination of sea water. In order to remove the insoluble substances in sea water, a flotation or ultrafiltration unit is generally installed upstream of the processing installations. This results in sedimented sludge and back-flush water, which have to be disposed of as a result of organic contamination.
The use of GEA decanters enables transportation and disposal costs to be efficiently reduced, as these machines reliably separate the sludge into solids and reusable water. Thanks to their high dewatering capacity, they are able to concentrate the solids up to 25 percent dry matter; this results in a considerable reduction in volume and correspondingly lower disposal costs.
In order to permanently avoid corrosion even in conditions of extremely high chloride ion content in sea water, we only use high-quality materials for designing our decanters. All components which come into contact with product are therefore generally made from duplex/super duplex steel, and feature maximum reliability.
Showing 4 of 4
The T.VIS® control top is an optimal system for controlling and monitoring GEA valves of the series VARIVENT®, ECOVENT® & T-smart.
Hygienic valves from GEA form the core component of matrix-piped process plants. Thanks to a pioneering valve concept that sets standards for its flexibility, as well as the latest control and automation functions, our valves offer manufacturers maximum product safety and process reliability. All GEA hygienic valves are designed to be efficient a...
Jet pumps, also referred to as ejectors, are devices for the conveyance, compression or mixing of gases, vapors, liquids or solids and for the production of vacuum in which a gaseous or liquid medium serves as the motive force.
Vacuum systems are based on jet pump technology. They essentially consist of combinations of jet pumps and condensers.
Other applications
After reaching its Mission 26 targets two years early, GEA launches Mission 2030 strategy with focus on growth, value and making a positive impact.
As more communities and businesses rely on district heat pump plants and climate-neutral refrigeration technology, ensuring they provide a continuous supply is of vital importance. GEA’s InsightPartner Blu-Red Care management...
Committed to bring Swiss production of wood insulation boards back to life, Lignatherm AG is counting on GEA’s innovative three-stage solution for water treatment to recycle nearly 100% of effluent water from wood fiber manufacture....