Specific emission control processes
Bubble Columns allow to conduct and control chemical reactions in the liquid phase. Bubble Columns are often used when the liquid-phase reactions are rather slow in relation to the gas absorption rate.
In comparison to other gas/liquid contactors (e.g. spray or packed columns), Bubble Columns feature a high liquid to gas volume ratio. This is beneficial when conducting rather slow reactions in the liquid phase as large reaction volumes can be realized.
Due to the high liquid inventory of the system the temperature of the reaction can be controlled very effectively, which is an advantage when temperature sensitive substances are to be produced.
Bubble Columns are also an ideal absorption system when dry spots must be avoided in the contactor (e.g. when crystallization can occur), which can cause blockages in conventional mass transfer equipment. GEA has developed a special non-blocking gas sparger design in this respect.
Furthermore, Bubble Column Reactors offer other benefits such as a simple operation without any moving parts; excellent mixing, high heat and mass transfer rates; low catalyst attrition rates and the ability to accommodate a wide range of residence time requirements.
Bubble Columns are gas/liquid contactors in which the gas phase is the disperse phase, meaning the gas phase is distributed into the liquid at the bottom of the column by an appropriate distributor and then moves upwards in the form of bubbles causing an intense intermixing of the gas and the liquid phase in the system.
In a Bubble Column the gas is sparged into the liquid in the form of bubbles without mechanical agitation. The configuration of a gas sparger is important since it determines the properties (e.g. size) of bubbles, which in turn affect gas holdup values and other parameters related to Bubble Columns.
Bubble Columns can be used for either absorption of gases into liquids, conducting chemical reactions in the liquid phase with or without an additional catalyst, simply mixing two or more phases or when liquid reactant products are to be stripped out of a liquid phase.
GEA's spray drying evaporation is a simple process that requires limited attention from the operator while maintaining high reliability. It can be easily integrated with either existing or new WFGD.
Environmental pollution of heavy metals is increasingly becoming a problem and global concern. In addition to the calomel process, often used in the field of non-ferrous metal production, GEA uses wet Electrostatic Precipitators (ESP), Spray Drying Absorption (SDA) and Ceramic Catalyst Candles (BisCat) to reduce heavy metals from flue gas.
The conversion of hot metal into steel produces CO-laden gases of high caloric value. The recovery of these gases means to save a considerable amount of energy. The LT-Steel Gas Process has established worldwide.
One of our most important activities in the refinery industry is gas cleaning for FCC units. GEA technologies combine engineering process engineering, environmental aspects and energy savings. Taken this into account, GEA offers clean air solutions while keeping the CAPEX/ OPEX low.
Healthy and happy cows are the key to successful and sustainable milk production. Keeping their cows healthy, therefore, is at the heart of every dairy farmer’s effort. Many factors influence the well-being of a cow, such as...
Industries across the board are working hard to meet net-zero targets while navigating stringent decarbonization regulations and legislation. At the same time, companies must balance growing demands for quality, product development...
Coffee, cocoa, milk, meat, fish and eggs – these daily staples rely heavily on intensive agriculture. With the rise of new food technologies, we have more sustainable alternatives. We sat down with Dr. Reimar Gutte, Senior Vice...