Accessories and options to build underground evacuation lines, to secure and preserve them from premature wear.
Very low voltage of electricity travels through the ground. The amount of electricity that can be carried by the ground depends on the type of soil. For example, damp hard clay soil has a high conductivity potential and dry coarse sand has virtually no conductivity potential.
Since electricity travels through the ground, if it finds a steel evacuation line, it will use it for whatever distance suits it. When electricity leaves the steel evacuation line, a chemical reaction occurs. This chemical reaction is the underground corrosion, which can be fast or slow depending on the type of soil in the area.
GEA recommends the use of a sacrificial anode on the equipment and at every 120 feet (36.5 m) on steel evacuation line.
After reaching its Mission 26 targets two years early, GEA launches Mission 2030 strategy with focus on growth, value and making a positive impact.
As more communities and businesses rely on district heat pump plants and climate-neutral refrigeration technology, ensuring they provide a continuous supply is of vital importance. GEA’s InsightPartner Blu-Red Care management...
Committed to bring Swiss production of wood insulation boards back to life, Lignatherm AG is counting on GEA’s innovative three-stage solution for water treatment to recycle nearly 100% of effluent water from wood fiber manufacture....