Liquid Dosage
Inhalation is often the preferred drug delivery method for lung diseases, offering a number of advantages for both patients and medical professionals for the administration of vaccines and other biological drugs.
The active ingredient of many inhalable products, such as anti-asthma medications, acts on the muscle cells of the pulmonary airways. Such medications can be rendered inefficient, however, if particles aggregate in the inhaler. In addition, to prevent dry powder aerosols from depositing particulate matter in the oropharyngeal cavity — and in the inhaler — dispensed particles should have a geometric diameter of 1–3 µm and a mass density of approximately 1 g/cm3.
Inhaled drugs are usually dissolved in an aqueous system, such as an isotonic salt solution, and aerosolized at a high pressure to obtain nebulized particles. The liquid solution is pumped through a homogenizing valve at 500–1000 bar, using a single stage process, during which semi-solid particles become dispersed in the liquid.
The high-pressure homogenization enables the size reduction of average to large particles and makes the suspension more stable as a result of the decreased sedimentation rate. Moreover, it eliminates biological risk and provides better tolerance to irritants, as well as improving the clarity and transparency of the processed product.
In addition to a comprehensive range of homogenizers, GEA also offers production-scale mixing, blending, spray drying and micronization solutions for the manufacture of inhalable products, plus an unparalleled level of expertise in the design and layout of suitable plant: from vessel size dimensions to valves and 3D P&IDs, and from R&D to full-scale production.
Showing 4 of 14
Combining process monitoring using online analyzers, together with solid process engineering principles and advanced process modelling techniques will enable processes to be actively controlled in order to compensate for input variations.
Aseptic valves face exceptionally high demands within UltraClean and Aseptic processes. You can be assured that they all provide highest quality in terms of hygienic design and sustainability.
GEA separators are designed for liquid-based applications. Using centrifugal force, they are used for separating suspensions consisting of two or more phases of different densities, i.e. they can be used for liquid-liquid separation, for liquid-liquid-solid separation or for liquid-solid separation. They are equally as effective at separating liq...
Innovative CIP concepts of GEA meet comprehensive high standards. Our experts guarantee product safety at every point of the process. Every upgrade is adapted to individual local conditions and customer requirements and leads to noticeable savings.
The world's population is growing and with it demand for milk. Dairy is an essential component of many global diets. However, its production can be resource-intensive and impact the environment. GEA’s Christian Müller, Senior Director Sustainability Farm Technologies, sheds light on how technological innovations powered by GEA make milk production more efficient and profitable.
Every safe beverage and bite of food is a victory against invisible microbial threats – a battle shaped by a century of hygienic process design. With more than 100 years of engineering and hygienic design know-how, GEA sets the industry standard for processing equipment that protects food and saves lives.
Engineering innovation often takes the form of incremental gains. Once in a while, it takes a leap. Case in point: The washing machine. Launched in September 2022, two new GEA software solutions are upending convention and delivering similarly dramatic efficiency gains in the resource-intensive process of membrane filtration.