Crystallization technology
Since 1924, today a GEA staple. Able to grow the largest crystals in a fluidized bed without mechanical circulation methods.
Invented by F. Jeremiassen of Krystall A/S in Oslo, Norway in 1924, it took the name of the city in which it was originally designed. It is also referred to as “growth-“, “fluid bed-“ and “Krystal-“ crystallizer.
GEA is Davy Powergas' and A.W. Bamforth's crystallization technology successor and as such, owns all the documentation of OSLO installations built by them. This background, added to GEA's own extensive experience, makes the primary designer of OSLO crystallizers of the world out of GEA.
The primary advantage of the OSLO Crystallizer until today is the ability to grow crystals in a fluidized bed, which is not subject to mechanical circulation methods. A crystal in an OSLO unit will grow unhindered to the size that its residence time in the fluid bed will allow.
The result is that an OSLO crystallizer will grow the largest crystals in comparison to other crystallizer types. The slurry is removed from the crystallizer's fluidized bed and sent to typical centrifugation sections. Clear liquor may also be purged from the crystallizer's clarification zone, if necessary.
The OSLO Crystallizer consists of five basic components:
In a similar way that with a DTB Crystallizer, a clarified solution containing fine crystals of a specific size, is withdrawn from the baffle zone. By superheating the solution within the external heat exchanger, the fines are dissolved. This superheating is relieved through the evaporation of a solvent which is either conduced to the subsequent process steps or is internally reused by applying a recompression system of choice.
The supersaturated solution is then guided down the draft tube, gently fluidizing a crystal bed where the supersaturation is relieved to the suspended crystals through crystal growth.
Simple in design and robust in operation. The working horse for industrial solution crystallization.
Available for product and feasibility trials with real samples and under real parameters. Either in GEA centers of excellence for crystallization or onsite thanks to our mobile units.
Process and mechanical innovation. Compact and Monoblock Forced Circulation Crystallizer.
Limited attrition and efficient fines destruction – a design to produce coarse crystals with a narrow size distribution.
GEA's innovative process marks a milestone in the pretreatment of biofuels such as hydro-treated vegetable oil and sustainable aviation fuel. By eliminating the bleaching process, manufacturers benefit from significant savings potential: over 50% lower operating costs and up to 12% less CO2 emissions.
Climate change and a growing world population put increased pressure on the energy-intensive food industry to feed more people without further impacting the planet. George Shepherd, GEA’s Global Technical Sustainability Manager, explains how GEA uses its engineering know-how to help processors produce more sustainably yet increase productivity.
The world's population is growing and with it demand for milk. Dairy is an essential component of many global diets. However, its production can be resource-intensive and impact the environment. GEA’s Christian Müller, Senior Director Sustainability Farm Technologies, sheds light on how technological innovations powered by GEA make milk production more efficient and profitable.